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Abstract. For inhomogeneous electromagnetic waves in isotropic media the operator evolution
solutions of Maxwell equations are obtained. These solutions are functions of the complex
spatial variable. In the case of homogeneous waves an evolution operator is associated with
a set of right-handed and left-handed generalized helices. In this set the helices of straight
circular cylinders are geodetic lines. It is shown that one of the branches of the evolution
operators is generated by traceless operators and that it correspond to standing evanescent waves.
These evolution operators are elements of the groupSL(2, C). For this Maxwell group a new
parametrization is introduced and appropriate composition laws are derived. The introduced
parametrization is compared with the known Fedorov parametrization.

1. Introduction

In [1] the operator solutions of the one-dimensional tensor Helmholtz equations for
electromagnetic and acoustical fields in isotropic media were investigated. These solutions
are evolutional and have an infinite set of branches which is divided into two groups of
operators: (a) with traces not equal to zero and (b) with traces equal to zero. The first group
characterizes the polarization evolution of running waves and the second characterizes the
evolution of standing waves which are elliptically polarized in the general case. In [1–4]
some features of the obtained and similar solutions were highlighted.

(i) They belong to general operator solutions or to be exact to the sets of such solutions.
The operator approach turns out to be useful for solving numerous problems of light and
sound propagation in chiral, dispersive and inhomogeneous moving media. In contrast to
the usual methods of integration of motion equations on the coordinate base, it enables us to
establish clear and laconic relationships between the emission characteristics and material
tensors. It may be promising for the investigation of inhomogeneous waves in problems of
total internal reflection. What is more such an approach is closely connected with group
theory which enables us in many cases to investigate the symmetries of wave equations
and their solutions without straightforward integration. Operator solutions are not needed
in the use of partial waves. This typical feature of the approach as applied to complex
modulated media makes it possible to avoid fairly cumbersome and tiresome calculations.
Connection of the concepts ‘partial wave’ and ‘evolution operator’ results from the known
mathematical relations between the partial and the fundamental solutions of systems of
ordinary differential equations. The fundamental solution describes the complex motion
of field vectors and photons corresponding to them. This conforms to Galilei’s principle
of motion superposition known in mechanics. To investigate the vector motions even in
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homogeneous isotropic media it is necessary to use modern methods of differential geometry
and topology. The key role in such a description is played by three-dimensional vectors
of wavenormals and two-dimensional surfaces of wavefronts. Immersed into the three-
dimensional space the fronts have their own metrics. Schrödinger in his Nobel report
[5] examined wave refraction in a layered medium and paid attention to the primordial
importance of wavefronts in comparison with rays. Validity of the conclusion made in [5]
is confirmed not only by progress in quantum mechanics but by the works on phase defects
and dislocations of optical wavefronts, on topological phases [6] and others as well.

(ii) The operator solutions in explicit form involve the operators of isometries (reflection
and rotation) which characterize symmetries of fields and possible sources related with them.
These isometries confirm the existence of the conservation laws and some arbitrariness
of the choice of models of numerical and spacetime sets. The existence of the infinite set of
helicoidal elliptical solutions which relate to standing waves shows itself by the presence of
photons and antiphotons (Pauli, Weisskopf) in nature. This symmetry is closely connected
with the charge symmetry. In [1] for curves on helicoid surfaces the general coordinate
dependences of their curvatures, torsions and Darboux vectors were found. This family of
right-handed and left-handed helices, describing a spatial distribution of circular polarized
light field, is a family of geodetic lines. In the case of a fixed value of the field vector in an
initial point for an evolution operator there corresponds a grid of such geodetic lines of the
straight circular cylinder. Solutions discussed in [1] can be treated as varieties of solitons
(Helmholtz solitons?). Soliton solutions can be the solutions of the linear non-dispersive
equations [7]. Helicoidal standing waves may be applied to study properties of the space-
time continuum and its discrete modifications by modern methods of information theory
[8], in the investigations of the topological features of vortex motions [9, 10], in topology
of the wavefronts of acoustical waves [11] and polaritons [14].

(iii) The solutions of the tensor dispersion equations give the generators of continuous
groups to be the branches of the square root

√
εµI = √εµ(1− n⊗ n). HereI = 1−n⊗n

is the projector to a wavefront surface. Appropriate global operators (Cauchy operators) in
concentrated mathematical form express the essence of the Huyghens principle for polarized
waves [1, 3, 4].

(iv) Many of the evolution operators, almost without any changes, are applied to the
very important class of inhomogeneous or evanescent waves [12–21]. For this purpose it is
necessary to complexify the wavenormal and, consequently, the wavefront as well. In the
literature there are no references to the operator complex description (without division of
fields into partial waves) of inhomogeneous electromagnetic waves except in some of our
works where, however, the possibilities of applying this approach to evanescent waves are
not displayed properly.

In this paper, we, to indicate some new features of the operator solutions as applied
to inhomogeneous waves, carry out a classification and establish the composition laws for
parameters of the continuous Maxwell groups which are generated by traceless operators. In
fact we discover the new parametrization of the groupSL(2, C) being the symmetry group
of optical evolution operators. We establish the connection of this parameterization with the
known Fedorov parametrization [22, 23] of the groupSO(3, C) isomorphic toSL(2, C).
The subsequent sections of the paper are devoted to consideration of the stated problems.

2. Evolution solutions and standing inhomogeneous waves

In [1] we show that the solutions of Maxwell equations

∇×E = ikµH ∇×H = −ikεE
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(k = ω/c and∇×ik = −∇×ki = eilk∇l) for plane waves in a homogeneous isotropic medium
with the permittivityε and the permeabilityµ can be represented in the evolutional form

Hτ (z) = exp[ikN(z− z0)]Hτ (z0) (1)

wherez = n · r, n is a real wave normal andN is the second-rank refractive index tensor.
It was shown thatN yields the relations

N2 = εµI I = −n×2 = 1− n⊗ n (2)

which is the tensor generalization of the scalar Maxwell relationn2 = εµ, where two
different cases are possible

N = ±√εµ(I − 2S ⊗C) Nt = 0 (3)

S ·C = 1 S · n = C · n = 0 (4)

and

N = ±√εµI Nt = ±2
√
εµ. (5)

In (3) and (5) and hereafter, a subscript t is used to indicate trace. In the case of absorption
or amplification of homogeneous waves for the evolution operator (1) together with the
initial field vector there is a corresponding set of generalized conic helices [24–26].

In this section we generalize, at first, the expressions (1)–(5) for inhomogeneous waves
with the complex wave normaln (n∗ 6= n) and, second, using the spectral expansions of
operators, we establish the fact that the operatorN in form (3) describes standing waves.
In the next section we carry out group analysis of evolution operators involved in (1) and
derive composition laws. The main result here is that operatorsN in form (3) generate
evolution operators belonging to the groupSL(2, C).

As is known [12, 13], inhomogeneous waves in the general case are described by the
complex wave normaln. The complex vectorn may be represented in the form

n = a+ ib (6)

wherea andb are real vectors. Without loss of generality the wave normaln (6) may be
taken to be normalized

n2 = n · n = 1.

Thena andb obey the conditions

a2− b2 = 1 a · b = 0.

Other forms of representation ofn are possible, in particular [20]

n = coshψn1+ i sinhψn2

wheren1 andn2 are real unit vectors andn1 · n2 = 0, ψ is a real parameter.
Supposing that all the field vectorsE, H, D, B depend on the complex coordinate

ξ = n · r = a · r + ib · r and repeating the calculations stated in [1] we conclude that the
spatial evolution ofH is given by a formula which is analogous to (1)

Hτ (ξ) = exp[ikN(ξ − ξ0)]Hτ (ξ0) (7)

where

n ·Hτ (ξ) = n ·Hτ (ξ0) = 0. (8)

Equation (2) remains valid and its solutions are (3) and (5). The difference is that the
projective operatorI in these formulae is no longer real and Hermitian. In view of (8)
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the evolution ofHτ takes place in the complex plane orthogonal ton. This plane can be
characterized by two vectors

e1 = −i

√
b2

a2
a+

√
a2

b2
b e2 = [ab]√

a2b2
(9)

which belong to it. Here [ab] denotes the vector product ofa andb. It is not difficult to
verify that

e1 · n = e2 · n = e1 · e2 = 0 e2
1 = e2

2 = 1 n = [e1e2]

I = e1⊗ e1+ e2⊗ e2. (10)

It is evident that the vectorHτ (ξ) can be written as a linear combination ofe1 ande2 (9).
Now we consider a particular case when

S = e(−) = 1√
2
(e1− ie2) C = e(+) = 1√

2
(e1+ ie2) (11)

wheree1 and e2 are determined by (9). In this caseS andC are circular vectors and
S2 = C2 = e(−)2 = e(+)2 = 0 andS ·C = e(−) · e(+) = 1. Straightforward substitution of
(11) in (3) in consideration of (10) ande2⊗ e1− e1⊗ e2 = [e1e2]× [12, 13] leads to

Nvers= ±i
√
εµn×

whereNvers is a rotation operator (so calledversor). It is evident that this operator is among
the traceless operators.

To understand better the character of the varying vectorHτ (ξ) as the coordinateξ
changes we shall find a spectral expansion of the evolution operator

�(ξ − ξ0) = exp[ikN(ξ − ξ0)] (12)

involved in (7). We shall suppose in the process that the operatorN is in form (3). It is
known that any three-dimensional operatorX acting in a two-dimensional subspace can be
represented in the spectral form

X = λ1ρ1+ λ2ρ2 (13)

supposing that its non-zero eigenvaluesλ1 andλ2 are not equal. Here in (13)ρ1 andρ2 are
projective operators

ρ2
1 = ρ1 ρ2

2 = ρ2 ρ1ρ2 = ρ2ρ1 = 0.

These projective operators can be found by using the relations

ρ1 = X − λ2I

λ1− λ2
ρ2 = X − λ1I

λ2− λ1
(14)

where I is a projective operator of the two-dimensional subspace (in the case under
considerationI = −n×2

). The eigenvalues ofX are determined from the characteristic
equation

|X − λI | = 0.

Since|X| = 1
2[(Xt)

2− (X2)t] and It = 2 then

|X − λI | = 1
2{[(X − λI)t]2− [(X − λI)2]t} = λ2−Xtλ+ |X|

and the characteristic equation takes the form

λ2−Xtλ+ |X| = 0. (15)
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We can find any regular function ofX as

f (X) = f (λ1)ρ1+ f (λ2)ρ2.

ForN (3) we immediately obtain from (15) and (14) that

λ1 = ±√εµ λ2 = ∓√εµ
and

ρ1 = I − S ⊗C ρ2 = S ⊗C. (16)

Then the spectral expansion of�(ξ − ξ0) (12) is

�(ξ − ξ0) = exp[±ik
√
εµ(ξ − ξ0)]ρ1+ exp[∓ik

√
εµ(ξ − ξ0)]ρ2 (17)

whereρ1 andρ2 are given by formulae (16).
There always exists such a vectorR (R · n = 0) thatC · R = 0. It is evident that

[SR] 6= 0. Thus vectorsS andR form a basis in the plane orthogonal ton. S andR are
eigenvectors of the projective operatorsρ1 andρ2

ρ1S = 0 ρ1R = R ρ2S = S ρ2R = 0. (18)

Since the setS, R is a basis then the expansion of the initial field vectorHτ (ξ0) is possible

Hτ (ξ0) = HRR+HSS.
In such a case and in view of (17) and (18) equation (7) is rewritten as

Hτ (ξ) = HRR exp[±ik
√
εµ(ξ − ξ0)] +HSS exp[∓ik

√
εµ(ξ − ξ0)]. (19)

Remembering thatξ = n · r = a · r + ib · r we obtain another expression forHτ (ξ)

Hτ (r) = HRR exp[∓k√εµb · (r − r0)] exp[±ik
√
εµa · (r − r0)]

+HSS exp[∓k√εµb · (r − r0)] exp[±ik
√
εµa · (r − r0)]. (20)

From (19) and (20) it clearly follows that the traceless operatorsN (3) generate
solutions describing in essence standing inhomogeneous waves which are superposition
inhomogeneous waves running in the opposite directions alonga. The amplitudes of such
waves are characterized by the vectorsS andR and increase or decrease in the direction
alongb.

As for the second branch of solutions (5) it is clear that these are simply running waves

�(ξ − ξ0) = exp[±ik
√
εµ(ξ − ξ0)]I

Hτ (ξ) = exp[±ik
√
εµ(ξ − ξ0)]Hτ (ξ0).

Returning to the example withS andC (11) we see that the vectorC = e(+) is in the
capacity ofR here (C ·R = C ·C = 0). Therefore, in this case

Hτ (ξ) = H(+)e(+) exp[±ik
√
εµ(ξ − ξ0)] +H(−)e(−) exp[∓ik

√
εµ(ξ − ξ0)]

whereH(+) andH(−) are the expansion coefficients of the initial vectorHτ (ξ0) in the basis
e(+) ande(−).
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3. Group SL(2,C) of symmetries of the operator evolution solutions

In this section we ascertain to which groups the evolution operators generated byN (3)
and (5) belong. First, we consider families of the traceless operatorsN (3). The following
facts should be pointed out here. In the first place all the operators� (17) act in two-
dimensional complex space. Second, determinants of these operators equal one because
they are exponentials of traceless operators. This fact can be tested by a straightforward
calculation too. Third, any transformation� (17) can be characterized by the parametersS,
C andη ≡ ±ik

√
εµ(ξ−ξ0). The product�(η′,S′,C ′)�(η′′,S′′,C ′′) has unit determinant

and again acts in two-dimensional complex space. It can be represented as an exponential of
some traceless operator. Now, we shall show that any traceless operatorL (nL = Ln = 0,
Lt = 0) can be written in the general form

L = η(I − 2S ⊗C) (21)

whereS andC are some complex vectors (S ·n = C ·n = 0, S ·C = 1), η is a complex
value. We can choose an orthonormal basis in the complex space, for example,e1 ande2

given by (9), and writeL as

L = z1(e1⊗ e1− e2⊗ e2)+ z2e1⊗ e2+ z3e2⊗ e1

wherez1, z2, z3 are complex parameters. Letη = (z2
1 − z2z3)

1/2. Then

L = ηL0 (22)

where

L0 = 1

η
[z1(e1⊗ e1− e2⊗ e2)+ z2e1⊗ e2+ z3e2⊗ e1].

Finally, let us representL0 as

L0 = I − L1 (23)

where

L1 = I − L0 =
(

1− z1

η

)
e1⊗ e1+

(
1+ z1

η

)
e2⊗ e2− z2

η
e1⊗ e2− z3

η
e2⊗ e1.

It is easy to see that|L1| = 0 and(L1)t = 2. This means thatL1 is a diad 2S ⊗C with S
andC obeyingS ·C = 1. Thus, from (23) and (22) representation (21) follows. So

�(η′,S′,C ′)�(η′′,S′′,C ′′) = �(η,S,C)
with some new parametersη, S, C. From the aforesaid, it follows that the evolution
operators� = exp[η(I − 2S ⊗ C)] form the group,η, S andC being parameters of
this group. If η, S andC do not obey any conditions then the number of independent
real parameters is 2+ 6 + 6 = 14. However, the conditions (4) decrease this number
from 14 to eight. Finally, operators (21) are invariant under transformationsS → αS and
C → (1/α)C, whereα is any complex number. This circumstance decreases the number
of independent parameters from eight to six. Thus the group under consideration is in
fact six-parameter. It is evident that it is the groupSL(2, C) of unimodular operators in
two-dimensional complex space, which is a complexification of the groupSU(2) [27]. It
remains for us to establish a composition law

η = η(η′, η′′,S′,S′′,C ′,C ′′)
S = S(η′, η′′,S′,S′′,C ′,C ′′)
C = C(η′, η′′,S′,S′′,C ′,C ′′).
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For this purpose we derive the product of two�-operators

�(η′,S′,C ′)�(η′′,S′′,C ′′) ≡ �′�′′
= [eη

′
(I − S′ ⊗C ′)+ e−η

′
S′ ⊗C ′][eη′′(I − S′′ ⊗C ′′)+ e−η

′′
S′′ ⊗C ′′]

= eη
′+η′′I − 2 eη

′′
sinhη′S′ ⊗C ′ − 2 eη

′
sinhη′′S′′ ⊗C ′′

+4 sinhη′ sinhη′′(C ′ · S′′)S′ ⊗C ′′

and reduce it to spectral form to compare with expansion (17), rewritten here as

�(η,S,C) = eη(I − S ⊗C)+ e−ηS ⊗C. (24)

Taking into account(C ′ · S′′)(C ′′ · S′) = 1− [S′S′′] · [C ′C ′′] we have

(�′�′′)t ≡ 21

= 2[cosh(η′ + η′′)− 2 sinhη′ sinhη′′[S′S′′] · [C ′C ′′]] |�′�′′| = 1. (25)

Then the characteristic equation (15) takes the form

λ2− 21λ+ 1= 0

and has the following solutions

λ1 = 1+
√
12− 1 λ2 = 1−

√
12− 1.

In view of λ1 = eη andλ2 = e−η one can obtain the expression forη

η = ln(1+
√
12− 1) = arccosh1.

Furthermore, we find a projectorρ2 which is the diadS ⊗C

ρ2 = �′�′′ − λ1I

λ1− λ2
= − 1

2
√
12− 1

[(eη
′+η′′ −1−

√
12− 1)I − 2 eη

′′
sinhη′S′ ⊗C ′

−2 eη
′
sinhη′′S′′ ⊗C ′′ + 4 sinhη′ sinhη′′(C ′ · S′′)S′ ⊗C ′′]. (26)

On the other hand, we can obtain another expression forρ2 valid forC ′′ ·S′ 6= 0. It is clear
that ρ2S

′ = βS andC ′′ρ2 = γC, whereβ andγ are some coefficients of proportionality.
Thenρ2S

′ ⊗C ′′ρ2 = βγS ⊗C = βγρ2 and(ρ2S
′ ⊗C ′′ρ2)t = βγ . In addition, we have

(ρ2S
′ ⊗C ′′ρ2)t = (ρ2

2S
′ ⊗C ′′)t = (ρ2S

′ ⊗C ′′)t = C ′′ρ2S
′. (27)

Therefore,

ρ2 = S ⊗C = ρ2S
′ ⊗C ′′ρ2

C ′′ρ2S′
= ρ2S

′ ⊗ C ′′ρ2

C ′′ρ2S′
. (28)

The partρ2S
′ we can identify as the vectorS and the partC ′′ρ2/C

′′ρ2S
′ as the vectorC

S = ρ2S
′ C = C ′′ρ2

C ′′ρ2S′
. (29)

From (26) it follows that

ρ2S
′ = − 1

2
√
12− 1

[(1− eη
′−η′′ −

√
12− 1)S′ − 2 eη

′
sinhη′′(C ′′ · S′)S′′] (30)

C ′′ρ2 = − 1

2
√
12− 1

[−2 eη
′′

sinhη′(C ′′ · S′)C ′ + (1− e−(η
′−η′′) −

√
12− 1)C ′′] (31)

C ′′ρ2S
′ = 1

2
√
12− 1

(C ′′ · S′)(eη′+η′′ −1+
√
12− 1). (32)
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Summing up we obtain the following composition law (C ′′ · S′ 6= 0)

η = arccosh1

S = 1

2
√
12− 1

[
√
12− 1−1+ eη

′−η′′)S′ + 2 eη
′
sinhη′′(C ′′ · S′)S′′]

C = 1

(C ′′ · S′)[eη′+η′′ −1+√12− 1]

×[2 eη
′′

sinhη′(C ′′ · S′)C ′ + (
√
12− 1−1+ e−(η

′−η′′))C ′′] (33)

where the value1 is determined by (25). The caseC ′′ · S′ = 0 will be considered later
separately.

Now we analyse cases when the formulae (33) are significantly simplified. In particular,
these are cases when the square root

√
12− 1 can be completely extracted. For example,

when [S′S′′] · [C ′C ′′] = 0 (or (C ′ · S′′)(C ′′ · S′) = 1) the square root is
√
12− 1 =

sinh(η′ + η′′). The foregoing condition means that eitherS′ ‖ S′′ or C ′ ‖ C ′′. In this case

η = η′ + η′′

S = 1

sinh(η′ + η′′) [e−η
′′

sinhη′S′ + eη
′
sinhη′′(C ′′ · S′)S′′]

C = 1

(C ′′ · S′) sinh(η′ + η′′) [eη
′′

sinhη′(C ′′ · S′)C ′ + e−η
′
sinhη′′C ′′].

Furthermore, ifS′ = S′′ andC ′ = C ′′ then

η = η′ + η′′ S = S′ = S′′ C = C ′ = C ′′

and then again the latter composition law is evident.
The following case when (33) is further simplified by [S′S′′] · [C ′C ′′] = 1 (or

(C ′ · S′′)(C ′′ · S′) = 0). To use formulae (33) we must assume thatC ′ · S′′ = 0 but
C ′′ · S′ 6= 0. Then

√
12− 1= sinh(η′ − η′′) and

η = η′ − η′′

S = 1

sinh(η′ − η′′) [sinh(η′ − η′′)S′ + eη
′
sinhη′′(C ′′ · S′)S′′]

C = C ′. (34)

To obtain the composition law for the case whenC ′′ · S′ = 0 andC ′ · S′′ 6= 0 we must
repeat the general derivation (27)–(32) forS andC but multiply the operatorρ2 (26) by
S′′ from the right and byC ′ from the left. Then

η = η′ − η′′
S = S′

C = 1

sinh(η′ − η′′) [sinh(η′ − η′′)C ′ + e−η
′
sinhη′′(C ′ · S′′)C ′′]. (35)

Interestingly, the composition law is achieved when bothC ′ ·S′′ = 0 andC ′′ ·S′ = 0.
Then from (34) or (35) it follows that

η = η′ − η′′ S = S′ C = C ′.
Let η′ = η′′. Then�(η,S,C) = �(0,S,C) = I and

�(η′,S′,C ′)�(η′,S′′,C ′′) = I
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or

�(−η′,S′,C ′) = �(η′,S′′,C ′′) (36)

under the condition thatC ′ · S′′ = 0 andC ′′ · S′ = 0. This means that we can confine
the region of values ofη by one of the complex half-planes. The obtained result (36)
can be easily understood if we consider the evolution ofHτ (ξ0) under the action of the
operators�(−η′,S′,C ′) or �(η′,S′′,C ′′) with application of formula (19). In this case
eitherR = S′′ or R = S′, respectively.

In order for the conditionsC ′ · S′′ = 0 andC ′′ · S′ = 0 to be fulfilled we can choose
S′′ = [nC ′] andC ′′ = [nS′]. Then from (24) and (36) it follows that

�−1 = e−η(I − S ⊗C)+ eηS ⊗C = eη(I − [nC] ⊗ [nS])+ e−η[nC] ⊗ [nS]. (37)

Making use of (24) and (37) we conclude that

�̃n× = eη(n× −C ⊗ [Sn])+ e−ηC ⊗ [Sn] = n×�−1

or

�̃n×� = n×
where tilde denotes transposition. LetA(0) and B(0) be arbitrary vectors which do
not coincide and orthogonal ton andA(η) = �A(0) andB(η) = �B(0) be vectors
transformed under (24). Then

A(η)n×B(η) = A(0)�̃n×�B(0) = A(0)n×B(0).
So the transformation (24) retains the scalar productAn×B with a weight n× as
invariant. Making the transition to a particular orthonormal basise1, e2, n = e3 we
haveAn×B = A2B1 − A1B2. In this case the vectorsA andB have transformation
properties like the spinors of the groupSL(2, C).

Thus in this section we have in essence introduced a new parametrization of the group
SL(2, C). As it turned out, this group is closely connected with the problem of light
propagation in isotropic media. As for the group of operators generated byN of type (5) it
is clear that this group is isomorphic to the group of complex numbers. We do not consider
this trivial question in detail here.

Also in [1] the branches of the square root
√

1 of the three-dimensional unit operator 1
were considered. These are±1 and±(1− 2S ⊗ C) whereS · C = 1 and appear in the
operator solutions of the Christoffel equation for isotropic media when velocities of the
transverse and longitudinal elastic waves coincide. In contrast to operators (3) and (5) they
have traces±3 and±1, respectively. Therefore, all the evolution operators of the Christoffel
equation generated by 1− 2S ⊗ C have determinants not equal to one. These operators
form a group but for this group it is impossible to introduceη, S, C-parametrization as
was done forSL(2, C). In fact, both 1− 2S ⊗C and

exp[η(1− 2S ⊗C)] = eη(1− S ⊗C)+ e−ηS ⊗C (38)

have two coinciding eigenvalues. However, the product of exponentials of type (38) has
eigenvalues which are non-degenerate in the general case. This means that exp[η′(1−2S′⊗
C ′)] exp[η′′(1−2S′′ ⊗C ′′)] cannot be represented as exp[η(1−2S⊗C)]. To confirm this
it is sufficient to consider the following simple example. Lete1, e2, e3 be an orthonormal
basis in three-dimensional space andS′ = C ′ = e1 andS′′ = C ′′ = e2. Then

1− 2S′ ⊗C ′ = −e1⊗ e1+ e2⊗ e2+ e3⊗ e3

1− 2S′′ ⊗C ′′ = e1⊗ e1− e2⊗ e2+ e3⊗ e3



3250 A N Furs and M L Barkovsky

in view of 1= e1⊗ e1+ e2⊗ e2+ e3⊗ e3. We have

exp[η′(1− 2S′ ⊗C ′)] = e−η
′
e1⊗ e1+ eη

′
e2⊗ e2+ eη

′
e3⊗ e3 (39)

exp[η′′(1− 2S′′ ⊗C ′′)] = eη
′′
e1⊗ e1+ e−η

′′
e2⊗ e2+ eη

′′
e3⊗ e3. (40)

The product of exponentials (39) and (40) equals

e−(η
′−η′′)e1⊗ e1+ eη

′−η′′e2⊗ e2+ eη
′+η′′e3⊗ e3.

It is evident that this product has three non-degenerate eigenvalues e−(η′−η′′), eη
′−η′′ and

eη
′+η′′ , and cannot be represented in the form (38) with anyη, S, C. Thus, for the group

of acoustical evolution operators (38) it is impossible to introduceη, S, C-parametrization.
For this group there are not enough values ofη, S, C to parametrize it. This circumstance
is directly connected with the fact that operators (38) act in three-dimensional space in
contrast to operators (24) acting in two-dimensional subspace. For the case of acoustical
evolution solutions further more detailed investigations are needed.

4. Relationships with the groupSO(3,C)

To express a finite transformationO of the groupSO(3, C) Fedorov has proposed [22]
using the complex three-dimensional vectorq for a parametrization of this group

O(q) = 1+ q×
1− q× = 1+ 2

q× + q×2

1+ q2
.

An evident advantage of this method of parametrization over other ways (for example, by
Eulerian angles) is in the very simple composition law: ifO(q) = O(q′)O(q′′) then

q = q
′ + q′′ + [q′q′′]

1− q′ · q′′ . (41)

The groupSL(2, C) is isomorphic toSO(3, C) and therefore can be parametrized by
the vectorq [22, 28] as well as with the same composition law. Lete1, e2 be an orthonormal
basis in complex two-dimensional space (for example, (9)). Then, any unimodular operator
� can be represented in the form

� = α0e1⊗ e1+ β0e1⊗ e2+ γ0e2⊗ e1+ δ0e2⊗ e2

|�| = α0δ0− β0γ0 = 1. (42)

In [28] the connections betweenα0, β0, γ0, δ0 and the componentsq1, q2, q3 of q were
established

q1 = −i
β0+ γ0

α0+ δ0
q2 = γ0− β0

α0+ δ0
q3 = −i

α0− δ0

α0+ δ0
(43)

and, conversely,

α0 = ± 1+ q3√
1+ q2

β0 = ±i
q1+ iq2√

1+ q2
γ0 = ±i

q1− iq2√
1+ q2

δ0 = ± 1− q3√
1+ q2

.

(44)

The two-valuedness in (44) is caused by the fact that both� and−� satisfy the condition
of unimodularity.

It is quite natural to find connections between theq-parameter andη, S and
C-parameters introduced in section 3. For this purpose we represent (42) and (44) in
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the spectral form using formulae (14) and (15) (without loss of generality we choose in (44)
the upper signs)

�t = 2√
1+ q2

|�| = 1

λ2− 2√
1+ q2

λ+ 1= 0

λ1 = 1− i
√
q2√

1+ q2
λ2 = 1+ i

√
q2√

1+ q2

ρ2 = S ⊗C = 1

2
√
q2

[(
√
q2+ q3)e1⊗ e2

+(q1+ iq2)e1⊗ e2+ (q1− iq2)e2⊗ e1+ (
√
q2− q3)e2⊗ e2].

Then

η = ln λ1 = ln
1− i

√
q2√

1+ q2

S = ρ2e1 = 1

2
√
q2

[(
√
q2+ q3)e1+ (q1− iq2)e2] (45)

C = e1ρ2

e1ρ2e1
= 1√

q2+ q3

[(
√
q2+ q3)e1+ (q1+ iq2)e2].

So in (45) the parametersη, S andC are expressed in terms of the components ofq. Now
we find the inverse transformations. Using formulae (24) and (42) we have

α0 = e1�e1 = eη − 2 sinhηS(e1⊗ e1)C

β0 = e1�e2 = −2 sinhηS(e1⊗ e2)C

γ0 = e2�e1 = −2 sinhηS(e2⊗ e1)C

δ0 = e2�e2 = eη − 2 sinhηS(e2⊗ e2)C. (46)

Substituting (46) into (43) and taking into account of the fact thatI = e1⊗ e1 + e2⊗ e2,
S ·C = 1 we find

qk = i tanhηSσkC k = 1, 2, 3 (47)

where

σ1 = e1⊗ e2+ e2⊗ e1

σ2 = −ie1⊗ e2+ ie2⊗ e1 = in×

σ3 = e1⊗ e1− e2⊗ e2.

It should be noted that the matrix representation of the operatorsσ1, σ2, σ3 in the concrete
particular basise1, e2 corresponds to Pauli matrices.

Thus, the obtained formulae (45) and (47) determine the relationships between two
different parametrizations of the groupSL(2, C): on the one hand, this is Fedorov
q-parametrization with the composition law (41) and, on the other, this isη, S,
C-parametrization with the composition laws (33) and (35). One can test that these
composition laws are compatible.
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5. Conclusion

In the present work we have dealt with the generalization of the operator evolution solutions
of Maxwell equations for inhomogeneous electromagnetic waves (evanescent waves) in
isotropic media. One of the branches of such solutions is described by the traceless operators
of refractive indices which are characterized by the complex vectorsS andC as in the
case of homogeneous waves. These operators are produced by the extraction of a square
root from the unit projective operatorI = −n×2

with the complex wave normaln. Using
spectral expansions for operators we have shown that the traceless operatorsI−2S⊗C are
associated with the superposition of inhomogeneous waves running in opposite directions.
In fact, such waves are standing evanescent waves. The tracelessness of the refractive
index operators with the complex normal points to the existence of evanescent photons
and antiphotons in isotropic media. We have shown that the optical evolution operators
are elements of the groupSL(2, C). For the first time we have introduced the newη,
S, C-parametrization of this group, the parametersη, S andC being contained in the
generatorsη(I − 2S ⊗ C) of the group. We have obtained composition laws for such
a parametrization. The groupSL(2, C) directly follows from the operator solutions of
the electromagnetic field equations and is generated by reflection and rotation operators.
We have called this group a Maxwell group of symmetry of operator solutions. We have
established relationships between the known Fedorov vector parameterization of the group
SO(3, C) and ourη, S, C-parametrization of the groupSL(2, C). As for the group of
acoustical evolution operators of the type exp[η(1− 2S ⊗C)], it turns out thatη, S, C-
parametrization does not suit here. This is a result of the other dimensionality of the space
where these operators act.
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